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Craze growth and craze interactions 

N. J. M I L L S  
Department of Physical Metallurgy, University of Birmingham, Birmingham, UK 

A dislocation array method of two-dimensional stress analysis has been used to interpret 
commonly-observed features of craze growth in glassy polymers. It is deduced from the 
lack of deviation of craze pairs that the tensile stress across an air craze is more than 90% 
of the applied stress. Craze interactions occur at an early stage of growth when their 
penetration normal to the free surface exceeds 20% of their separation in the direction 
of the applied stress. It is suggested that the growth kinetics of crazes are controlled by 
the potential energy changes in the surrounding elastic material, which in turn are 
affected by the geometric interactions of crazes. 

1. Introduction 
Three recent reviews [1-3]  of crazing in glassy 
plastics, give the background to the problem of the 
stress analysis of craze growth. The stress analysis 
of isolated crazes has been based either on 
particular models such as that of Dugdale [4] for a 
line plastic zone at the end of a crack, or on 
Fourier transform analysis of the observed craze 
thickness profiles [3]. The former approach has 
been used, for the crazes that occur at crack tips 
in polymethyl methacrylate (PMMA) [5, 6], poly- 
vinylchloride (PVC) [7] and polycarbonate (PC) 
[8] to analyse both the length, and the thickness 
profile. The latter approach was adapted to 
crazing by Knight [9] and then applied to the 
thickness profiles of crazes observed in PMMA by 
holography [10] and in polystyrene by electron 
microscopy [11]. In all of the above works the 
thickness profile of a craze has been observed on a 
particular x - y  section (Fig. 1) and experimental 
conditions have been such (through-thickness 
crack etc.) that the craze has the same profile at all 
other x - y  sections. However, Fig. 1 indicates that 
general crazes that initiate from a free surface do 
not have a constant cross section parallel to the 
surface plane, and that other crazes may be suf- 
ficiently close that the possibility of the stress 
fields of crazes interacting cannot be ignored. 

The purpose of trying to analyse the stress 
fields of crazes is to be able to make predictions 
of the growth in size and change of shape of 
crazes prior to crack initiation. As the crack will 

probably initiate from the largest craze it is 
important to know over what range of stresses 
crazes will appear, and what size distribution of 
crazes is likely. Reports of craze growth have been 
of the surface length variation only, (Fig. 1). At 
ambient temperatures, craze lengths in poly- 
carbonate have been found to be proportional to 
log time [12], and craze lengths in polystyrene 
have been found to be proportional to time [13]. 
The shape of crazes in PMMA has been observed to 
change with time [14], as a result of mutual 

Z 

Figure 1 Three-dimensional sketch showing a few surface 
crazes and the dimensional parameters used to charac- 
terize their growth. L is the surface length, a is the pene- 
tration, s is the separation, and f is the off-set of a pair of 
crazes. 
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hinderance. However, it is not known whether this 
is a general phenomenon.  

The new stress analysis method described in a 
companion paper [15] is applied here in order to 
determine if craze interaction is a significant 
factor influencing craze growth. Before this 
analysis is undertaken the major existing theories 
of  the micromechanics of  craze growth are 
reviewed in order to identify their strengths and 
weaknesses. 

2. Existing models of craze micromechanics 
2.1. The Verheulpen-Heymans-Bauwens 

model 
This two-dimensional analysis [12] concerns a 
central craze in an inffmite sheet, formed perpen- 
dicular to a tensile stress, (r.o, applied at infinity 
(Fig. 2a). It assumes that  the normal traction 
across the craze differs in value in the craze body,  
ae, and craze tip, a e, regions. In it the craze is 
conformally mapped from the z-plane into a 
~'-plane, in which it becomes a unit circle, and the 
stress components  are given in terms of  the co- 
ordinate ~'. On checking this analysis an error or 
misprint was found: in Equation A24, for (r=, the 
sign before Im should be a plus and not  a minus. 
However, for the expressions A24 to A27 in [12] 
the stress field can be expressed more concisely in 
terms of  the co-ordinate z = x + iy 

0"= (a  e - -  a e ) i y a  2 sin 2/3 
2 + l r ( z 2 - - a 2 ) ~ ( z 2 - - a 2  cos2 ~) (1) 

and 

2 

�89 + (r~y) 

(re - -  Oe [ 
7r/2 IRe 

[ z t a n ~  ~ ] 
t a n - '  [ ( z ~ - - ~ )  --  ~ l , 

(2) 
where co,1(1 
R is the length of  the craze tip region and a is the 
total craze half-length. These equations could also 
have been derived from the Westergaard stress 
function [16] given for line yielded zones ahead 
of  a central crack, with a stress at inf'mity of  
(r .  --  oc, and a yield stress, (r e --  (rc and adding a 
uniform stress field such that  (ryx = (re, Oxy = 

axx = 0 everywhere. 

< a ) <.-R~ 

Figure 2 Two-dimensional models of crazes proposed by 
(a) Verheulpen-Heymans-Bauwens and (b) Argon and 
Salama. The craze opening profile is magnified greatly in 
the y-direction, and the level of local tensile stresses is 
indicated by the lengths of the arrows. 

The physical assumptions in the model are 
open to a number  of  criticisms: 

(i) The analysis is two-dimensional, whereas 
real crazes have a three-dimensional form and they 
usually grow away from a free surface (Fig. 1). 

( i i )A single craze is considered, whereas 
usually a number of  crazes grow simultaneously; 
hence any craze interactions are neglected. 

Off) The craze initiation problem is not con- 
sidered; a craze is assumed to pre-exist, with bo th  
a body and a tip region. There is considerable 
evidence that  crazes initiate from surface grooves 
[17]. 

(iv) Equation 2 implies that  ee < a ,  and ae > 
e , ,  and thus that  crazes should only appear when 
e .  fails between these two limits. If, as in (iii), 
surface grooves were present then the restriction 
o .  > ac would no longer be necessary. Some 
observations of  the craze shape at crack tips in 
PMMA and PC have been analysed in terms of  a 
constant a e that  is approximately equal to the 
uniaxial tensile yield stress [7, 8], in which case 
e e would be larger than o , .  

(v) Any purely elastic analysis is unable to 
predict craze growth kinetics. In the original 
version of  the model it was assumed that  no 
material was drawn into the craze through its 
sides, hence, the material in the craze extends 
by creep. An empirical visoelastic model was 
then used to describe the creep process in the 
craze and to predict the variation of  craze length 
with time, t, which was found to be of  the form 

a = A In ( t / t * ) ,  (3) 

where A and t* are constants. In a more recent 
paper [18] it is concluded that  craze thickening 
is due to drawing in new material through the 
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craze sides. It is still observed that the crazes grow 
with a constant ratio of maximum craze opening, 
8o, to length, a. Since the elastic analysis gives, for 
R ~ a ,  

6o/a = (1 -- 2v)(a,~ -- %)/2G (4) 

where u is Poisson's ratio, and G is the shear 
modulus, then, as the applied stress o00 is constant, 
% is also constant. It is postulated that craze 
growth kinetics are similar to those of a neck 
growing in a tensile specimen under creep loading, 
i.e. that the rate of drawing in material through 
the craze walls entirely controls the craze length, 
and there are no equilibrium values of the craze 
length. 

(vi) It follows from (v) that the craze tip 
region, of length R, will grow longer as the craze 
length increases, if the craze tip stress oe remains 
constant. This is physically unrealistic for a craze 
initiation process of the type proposed by Argon, 
which would be more likely to be a region of con- 
stant length. 

2.2. The  A r g o n - S a l a m a  model  
This model [13] differs from the Verheulpen- 
Heymans-Bauwens model in that it assumes a 
single tensile stress level, oe, normal to the craze, 
and a conventional (non-craze) yielded zone with 
stress, Y, ahead of the craze tip, see Fig. 2b. Other- 
wise the mathematics of the stress analysis are 
identical. It is assumed that the yielded zone 
length, R, is much smaller than the total craze 
length a, so, in these circumstances of "small scale 
yielding" Equation 2 reduces to 

o~ - -  % R ( 5 )  

It is assumed that both the yielding and the craz- 
ing processes are strainrate and temperature sensi- 
tive, and that this sensitivity takes a form, 
developed by Argon [19] in which the plastic 
strain rate k is related to the yield stress, Y, and 
the temperature, T, by 

S 

;)-)I k = eoexp -- 1--  , (6) 

where A, ko and Y are constants. 
It is assumed that the length, R, of the yielded 

region remains constant as the craze grows; hence, 
according to Equation 5, the value of the craze 
stress o c must increase to a value almost equal to 
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the applied stress, g.~. The craze growth velocity, 
v, is directly proportional to the strain rate in the 
yielded zone, so, after an initial transitional 
period, the craze velocity settles down to a steady 
value proportional to the right-hand-side of 
Equation 6. 

The Argon-Salama model is similar in many 
ways to the Verheulpen-Heymans-Bauwens 
model, and it has many of the same limitations. 
The craze growth kinetics are determined by the 
yielding kinetics of the bulk polymer: the Argon 
model states that a constant imposed stress 
produces a constant strain rate whereas the 
Verheulpen-Heymans-Bauwens model states that 
in the neck propagation process under creep con- 
ditions the neck velocity is inversely proportional 
to the elapsed time. Both of the models work for 
the limited sets of data to which they are applied, 
but they are incompatible, and neither are able to 
predict the effect of craze interactions. 

3. The use of dislocation array stress 
analysis methods to analyse craze growth 

3.1. Introduction 
The details of  the model and the checks on its 
performance have been described in the com- 
panion paper [15]. It enables more complex 
geometrical arrangements of crazes than those in 
Fig. 2 to be analysed. At this stage the com- 
plexities of the kinetics of the yielding and void 
formation processes involved in crazing are not 
brought into the analysis, nor is the non-linear 
viscoelastic behaviour of  polymers. The craze is 
initially modelled as a plastic region in a linearly 
elastic material (Fig. 3a) and the potential energy, 
V, of the elastic region, that is left when the craze 
is cut out, is calculated. Depending on the situ- 
ation being modelled, the driving force for craze 
growth is different. In Fig. 3a and b where there is 
no crack present, when a uniform stress field equal 
to the applied stress at infinity tr~ is subtracted, 
the remaining problem is that of an internally pres- 
surized crack, either with (a) or without (b) a 
yielded zone at the end. The driving force for the 
growth of this "crack" is the potential energy 
release rate, -dV/da. For most geometrical 
arrangements, this quantity is always positive so 
the "crack" never stops growing. When the uniform 
stress field of o0o is replaced, the craze will never 
stop growing either, though the kinetics of its 
growth may depend on the rate at which plastic 
work, P, is required to thicken the craze. 



(a) (b) (c) 
I I I 
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V 

pressurized pressurized crack + 
c r a c k  y i e l d e d  z o n e  

Figure 3 Two-dimensional models of crazes discussed in 
this paper. The vertical line is either a free surface or the 
centre line of an infinite sheet. (a) single level craze stress 
model, (b) two-level craze stress model and (c) crack plus 
twoqevel craze stress. Below each is the description of the 
actual problem solved by stress analysis, when the stress 
field at infinity is removed. 

In Fig. 3c where the craze has grown from a 
pre-existing surface or central crack, it is assumed 
that the crack length, a, remains constant. It was 
shown in [15] that the line yielded zone of  length, 
R, (in this case the craze) would grow if 
- -  dV/dR > 0, and that this gave identical results 
to those found using other criteria for yielded 
zone growth. It is possible in this situation that the 
craze reaches an equilibrium length. 

3.2. Predictions of the growth of pairs of 
crazes in the surface plane 

It is commonly observed that crazes occur in close 
proximity on a free surface, and that they remain 
parallel to one another. The simple explanation 
would be that they are all growing normal to the 
applied tensile stress, but this neglects the local 
stress fields around each craze. 

The situation modelled was an isolated pair of  
crazes that are initially parallel but off-set, see 
Fig. 4. Referring back to the three-dimensional 
sketch in Fig. 1, this two-dimensional model could 
apply approximately near the free surface when the 
craze penetration is greater than the craze surface 
lengths. 

The initial calculations were for a single level of 
craze stress, cr e, that was constant along the craze; 
accordingly, % must be less that the applied stress, 
o=, in order for the craze growth to be energetic- 
ally possible. Fig. 4 shows the variation in the pre- 
dicted growth paths of  the inner craze tips of  the 
pair, as the ratio oe#roo is varied, with values of 
the quantity --  dV/da, given in Table I. 

It can be seen that as oe/cr= increases towards 
1.0 the deviation of  the growing crazes decreases, 
but the values of  -- dV/da also decrease sharply. 

. - (  

~ " 0  16o 200 pm 

. . . .  ~ r ~  ~ 

. . . . . . . - ' "  

> . . . . . . . .  

2O 

20 40 llm 

........ . . . .  ~ : ~ : F - - - . -  

F/gum 4 Predictions for the growth paths of two off-set 
crazes; the small inset shows the complete geometrical 
situation, whereas the larger part shows the paths of the 
crazes relative to the centre of symmetry, 0 for single 
craze stress levels of 20% of a~. . . . . . .  70% of a~ - ..... , 
90% of croo -- -- -- and 95% of aoo - -  

For oc/ooo t> 1 craze growth is only possible if 
there is a local stress raiser, for example a crack, 
present. The other extreme of  ee = 0, which repre- 
sents two cracks growing has already been 
analysed [15]; in this case the cracks deviate very 
strongly in growth direction once they overlap. In 
order to predict whether craze growth is preferred 
at the inner or at the outer pair of  craze tips, the 
values of  - d V / d a  for craze growth at the two 
ends can be compared. Initially, the level of  
--dV/da is higher at the inner craze tips, and it 
remains so until the crazes have overlapped by 
1.4 times the craze separation, whereupon the 
value at the outer craze tips becomes larger. 

When the surface crazes on an unplasticized 
PVC tensile specimen were examined (Fig. 5), 
many pairs of  overlapping crazes were found, but 
there was no detectable deviation in the craze 
growth direction. This seems to be true for the 
many types of  glassy polymers examined, and 
for nearly all the published photographs of  surface 
crazes [1, 2]. However, when thin fdms (~  1/~m 
thick) are stressed in tension [20] deviations of  
the type shown in Fig. 4 are observed when the 
craze-tip separation, s, is small. Therefore the 
single craze stress model can only match exper- 
imental observations if 0.9 < ee/ooo < 1.0. Devi- 
ations are sometimes observed with solvent crazed 
polymers; Fig. 6 shows the surface of  polycar- 
bonate, crazed in the presence of  25 vol % toluene 
75vo1% propanol mixture [21]. This produces 
large weak crazes that deviate in the way indicated 
by Fig. 4. 

Recent work on polystyrene crazes by Kramer 
[3] has suggested that a two-level craze stress 
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T A B L E I Predicted potential energy release rates (Jm -2) for the growth of the inner ends of a pair of off-set crazes, 
initially 230 t~m long, o.. = 50 MN m -2, E = 3 GN m -2, v = 0.45 

Craze oe/a=,(Oe/a..) 
growth 
(t~m) 0.2 (--) 0.7 (--) 0.9 (--) 0.9 (1.2") 0.95 (--) 

12 405 58.2 6.48 5.99 1.62 
24 581 80.0 8.62 8.54 2.12 
36 409 48.9 4.89 5.63 1.18 
48 143 19.1 2.16 2.72 0.54 
60 47 8.2 1.09 1.42 0.29 

*A craze tip region 6/~m long. 

model produces a more accurate representation 
than the single level craze stress model. It is 
possible for the craze tip stress, Oe, to be greater 
than the applied stress, o| and the craze still to 
grow, provided that the craze body stress, oe, is 
less than o0.. Since details of  the size of  the craze 
tip region are only known for polystyrene, similar 
values have been assumed to apply for PVC. For a 
tip region 6 ~ m  in length, with o e =  1.2oo. and 
with o e = 0.9o=, the change in the craze growth 
path predicted by the two-level craze stress model 
is negligible compared with that predicted by the 
single craze stress model. 

It can therefore be deduced from photographs 
such as Fig. 5 that: 

(i) The tensile stress transmitted across the 
craze is a high percentage of  the applied stress, 
probably > 90%; 

(li) Crazes only grow past each other to a 
limited extent because craze interactions reduce 
the energetic driving force at the inner pair of  
craze tips. 

3.3. The energetics of craze growth normal 
to a free surface 

Craze growth normal to a free surface is ultimately 
more important than growth along the surface 

because the direction of  the eventual crack growth 
(if any) will be normal to the surface. It should 
not  be assumed that the craze surface length, and 
the degree of  penetration are equal. 

In the two-dimensional model o f  craze growth 
from a free surface a semi-infinite sheet y / >  0 is 
subjected to a single tensile stress component 
o~ at infinity that acts in the x-direction. Since 
the craze(s) grow in the plane perpendicular to the 
largest principal tensile stress they will grow in the 
y-direction; consequently only the energetics of  
craze growth need be investigated. The results can 
be related to the three-dimensional situation 
shown in Fig. 1 for the case when the craze surface 
length is much greater than the degree of  
penetration. 

The simplest situation to analyse is that of  a 
single edge craze that has a constant tensile stress 
oe across it (Fig. 3a). If  a uniform stress axx = a~ 

is applied everywhere the resulting problem is that 
o f  an edge crack under a uniform internal pressure, 
p,  of  a ~ - - o e  in a sheet that is stress-free at 
infinity; the potential energy, V, of  this system is 
given by [22] 

V = -- 0.9879(1 - v)p2a2/G. (7) 

Figure 5 Surface crazes in unplasticized PVC; the arrows 
show the initiation points of two crazes. 
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Figure 6 Surface crazes in polycarbonate in a l :3v/v 
toluene to propanol mixture (Crown copyright). 
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Figure 7 Variation of the potential energy release rate, 
--dV/da, and of the rate of dissipating plastic energy in 
the craze, dP/da, for an edge crack 1 ;zm in depth with a 
two-level craze stress. The craze tip, 0.5 #m in length, has 
a stress of 60MNm -~, the craze body has a stress of 
45MNrn -2 and the applied ao~ is 50MNm -2. The 
material used was of Youngs modulus 3GNm -2 and 
Poisson's ratio 0.45. For comparison the dotted line 
shows the --dV/da relation without the crack being 
present. 

The value o f  - d V / d a  will increase linearly from 
zero when the craze has zero length. This model 
leads to unrealistic predictions of  craze growth: 
firstly, there is no energetic driving force for craze 
initiation, and secondly, the craze growth velocity, 
v, should accelerate as the craze length increases, 
if it is assumed that v is a monotonically increasing 
function o f -  dV/da such that 

V = f(-- dZ/da), (8) 

where f is a monotonically increasing function. 
The assumption of  behaviour in keeping with 
Equation 8 is a reasonable one, considering the 
widely-found relationship o f  the same form for the 
crack velocity of  polymers (see later). 

The first modification of  the simple model is 
to supply a surface groove that will help initiate 
the craze (Fig. 3b). Although a two-stress craze 
model is used it does not modify the predictions 
markedly; Fig. 7 shows the variation i n -  dV/da 
with craze length. The effect of  the surface crack 
(of length 1 #m)  is to provide a non-zero initial 
value of  - d V / d a ;  then after a growth of  about 
lOgrn - -dV/da  increases proportionally with 
craze length. (The major part of  this increase is 
supplied by the crack opening.) This modification 
has now overcome the problem of  craze initiation 

the craze grows; this is roughly ten times larger 
than - dF/da  and it too tends to increase linearly 
once the initial stages of  craze growth are com- 
plete. Hence, since it is impossible for the poten- 
tial energy release to supply the whole of  the 
plastic work done in the craze, the majority of  the 
plastic work must be supplied by the loading 
system. 

The second modification of  the simple model is 
to consider the simultaneous growth of  a number 
of  crazes from a free surface. If  the crazes are 
initiated without the aid o f  surface cracks, then 
Fig. 8 shows that the value o f -  d V/da starts 
from zero, but reaches a plateau value of  
(a~--ae)2(1--v2)s/2E, where s is the craze 
separation, when the craze length exceeds 30% of 
the craze separation (this was the problem 
analysed in the previous paper [15]). The effect 
of  including small surface cracks in the model is 
dramatic; if the cracks are 1 pm in depth (a 
probable value for the surfaces of  most glassy 
polymers) and separated by 200/4m, then the 
value of  - - d V / d a  is nearly independent of  the 
craze length, whereas if the cracks are 2 p m  in 
depth and 200pro  apart the initial value of  
--dV/da would, for the stresses and elastic 
constants used, be of  the order of  three times 
the asymptotic value. It can be deduced from 
Fig. 8 that, if the polymer surface contains a 
distribution of  scratches of  different depths, 
then the deepest scratches will initiate crazes 

3FI 

21 " \ .  ~ ~ ~ 

f 
. . . . .  

0 0'2 a + • Is 014 

Figure 8 Craze growth from a series of equal parallel edge 
cracks with the same stress parameters and elastic con- 
stants as Fig. 7. - for a crack length/crack separation 
ratio of 1:200 (0.5 #m crack separated by 100#m) and 

but still predicts accelerating craze growth. It . . . .  for a crack length/crack separation ratio of 1 : 100. 
should be noted that the absolute level of  - d  V/da is normalized by dividing it by the asymptotic 

value when R ~ ~, and the craze length R is normalized --dF/da depends on the assumed values of  (re, 
am and the surface crack length. Fig. 7 also shows by dividing by the separation. The dotted curve is for a 

single level craze stress model growing from a free surface 
the rate at which plastic work is done, dP/da, as without a crack. 
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first, and these crazes will grow rapidly until 300 
they begin to interact strongly when their length/ 
separation ratio exceeds 0.3. 

The conclusions of this section are that: L(gm) 
(i) Any realistic model of  craze initiation must 

200 
include surface scratches or grooves; 

(ii) craze interactions in this two-dimensional 
model lead to a constant energetic driving force 
--dV/dR when the craze lengths exceed 30% of 
their craze separations. 100 

4. Comparison of predictions with 
experimental data on craze growth 

A variety of different kinetic laws have been used 
to describe the experimentally-determined craze 
growth data for polymers. The data available 
seems to be exclusively measurements of the sur- 
face length, L, (Fig. 1) rather than of the pene- 
tration from the free surface of the craze. Thus, at 
a temperature of 78 K, where shear flow is mini. 
mized, crazes grow at a constant velocity [23] in 
several polymers; at room temperature [12] and at 
283 K [24] crazes in polycarbonate grow with 
lengths proportional to log time. For higher 
stresses, in the results of  [24], there is evidence of 
growth ceasing after a period of time. In [13] 
where "the lengths of only isolated crazes were 
measured as a function of time" constant craze-tip 
velocities were found for polystyrene and poly- 
methylmethacrylate (PMMA). However, in [14] 
the craze-tip velocity was found to decrease with 
time for PMMA at 23 ~ C at a stress of 25 MNm -2, 
when only isolated crazes grew, and to decrease 
to zero after about 100min for a stress o f  
40MNm -2, due to craze interactions. Results 
obtained in this laboratory [25] on polyvinyl- 
chloride confirm that craze growth ceases after 
approximately 200 minutes when high stresses 
are applied (Fig. 9). Prior to this the surface 
length increase is proportional to log time for 
times between 50 and 150 min. 

It may well be that in a number of investi- 
gations the form of the craze length against time 
relationship would have changed had the exper- 
iment been continued for longer. When the PVC 
specimens were sectioned in a plane containing the 
tensile stress direction and the surface normal, it 
was apparent that the crazes were fairly regularly 

*The crazes are mature in the sense that their growth in 
bands at both ends. 
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Figure 9 Variation of craze surface length, L, with time 
for PVC at 20 ~ C under an applied o=o = 35 MN m -2. The 
variation of the creep strain with time is also shown. 

spaced and had nearly uniform lengths (Fig. 10). 
There was no evidence of localized yielding in the 
form of shear bands. Hence, there is a strong 
probability that the elastic stress fields of the 
crazes have interacted in a way similar to that 
modelled in Section 3.3. The effects of this elastic 
stress field interaction can be visualized using 
photoelastic models [26], for example in the case 
of parallel edge cracks, see Fig. 11. It can be seen 
that there are severe stress gradients near and 
between the crack tips, but, at only a short 
distance behind the crack tips the stress has 
decayed to a very low value. Hence, a surface layer 
of depth just less than the crack lengths is stress 
relieved. The two-dimensional stress analysis of 
Section 3.3 was able to predict maximum shear 
stress contour maps identical to that in Fig. 11, 
providing a useful check on the validity of the 
analysis. 

Further evidence of the interaction of growing 
crazes was obtained during work on fatigue crack 
initiation in polycarbonate [27]. These tests were 
made on four-point bend specimens, so that it was 
possible on have, on a single specimen after a given 
number of fatigue cycles, a range of maximum sur- 
face strains in the region between the inner and 
outer load points. It was found that the density, p, 
of "mature"* crazes (crazes mm -2) increased as the 
maximum strain increased and their length, L, 
decreased. If the area of surface that is stress 

surface length has been stopped by the formation of shear 



Figure 10 Crazes in PVC seen 
normal to the free surface, so 
that the penetration depth, a, is 
visible. 

relieved by a craze is proportional to L 2 then it 
might be expected that oL 2 will be a constant pro- 
vided that there are sufficient crazes present to 
stress relieve the whole surface. Using the data 
from Fig. 1 of [27] it was found that pL 2 had a 
mean value of 0.26 with a standard deviation of 
0.07 for values of  p between 43 and 189 crazes 
mm-2. 

5. Discussion 
First the question of whether craze growth is a 
direct consequence (or cause) of some other pro- 
cess will be discussed. It has been suggested that 
craze growth is directly linked to the creep pro- 
cess, initially as a result of  the creep of the craze 
material [12], and more recently because the 
drawing-in of material through the craze sides is a 
necking process that occurs under creep conditions 
[18]. If this were true then it would be expected 
that the kinetics of craze growth, and of the other 
process, would be identical. However it is clear 
that Fig. 9, of craze growth in PVC, is quite unlike 

Figure i i  A photoelastic model of paraUel edge cracks, 
with the isochromatic (maximum shear stress) contours 
visible, under a tensile stress at infinity normal to the 
cracks. 

the creep strain variation in the same material, 
which is initiated earlier, and shows no sign of 
reaching an equilibrium value after 200m in. In 
addition, the craze growth cannot be linked to 
neck propagation for this material, since it was 
experimentally impossible to get necking to occur 
under creep conditions, brittle fracture always 
occurring first. While one negative example does 
not rule out the possibility that craze growth is 
linked to other processes in some polymers under 
some conditions, it does show that this is not 
universally true. 

Next, the conclusion of a recent paper [10] 
that "craze growth criteria based on the concept of 
a constant critical total strain energy release rate 
cannot be correct" will be examined, since, if it 
were true, it would nullify the usefulness of the 
analysis in this paper. The authors calculated by 
three methods the strain energy increments AU 
that occur when a craze grows in PMMA in a 
methanol environment under fixed grip con- 
ditions. Their first method of  calculating AU was 

AU (a) = - -gAP/2B ,  (9) 

where g is the fixed grip displacement, ~xP is the 
change in the applied tensile load, and B is the 
specimen thickness. Howdver, in fact the elastic 
material is not under "fixed grip" conditions: 
although the grips at the ends of the specimen 
are fixed, the craze surfaces change their displace- 
ments and these are as much a part of the 
boundary of the elastic region as are the grips. 
Their third method of calculating AU was 

= fo 2w( ) dz, 0o) AU(a) 

where a is the craze length, o--~ is the mean tensile 
stress normal to the craze before and after the 
craze growth, 214/is the total craze opening dis- 
placement (AW might be more appropriate) 
and z is the co-ordinate axis parallel to the craze. 
This quantity is not the total strain energy incre- 
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ment either; it is in fact the increment of plastic 
work in the craze, and as such it should be sub- 
tracted from AU (I) to find the real change in the 
stored elastic energy. Consequently the strain 
energy release rate G can be calculated using 

G = (AU (1) -- AU(a))/Aa, (11) 

where Aa is the craze growth increment, yielding 
G-values that vary erratically between - -60  and 
+ 20 J m -~. This contrasts with their calculations 
which purport to show that G rises rapidly from 
8 0 J m  -2 to a value of 600Jm -2 when the craze 
stops growing. Consequently, the authors' data 
does not rule out craze growth criteria based on 
G, it merely shows that G is difficult to measure 
experimentally and that it is probably smaller than 
50 J m -2 for the polymeric system investigated. 

It was proposed in [15] that the equilibrium 
length, R, of a line yielded zone occurred when 
the potential energy, V, of the elastic material had 
a minimum value, i.e. when --dV/dR = 0. The 
shape of a craze approximates well to a line 
yielded zone because its length-to-thickness ratio 
is very large. This criterion can only be used if the 
applied stress does not fall; if the criterion is 
applied to crazes this must be the case because 
crazes do not heal up when the load is reduced or 
removed. If  the criterion is applied to crazes, then 
--dV/dR is the energetic driving force for the 
craze length R to increase, in the same way that, in 
fracture mechanics, --dV/da is the energetic 
driving force for the crack length, a, to increase. 

In the original version of linear elastic fracture 
mechanics there was no possibility of slow crack 
growth. The crack grew if, and only if, the stress 
intensity factor, K, at the crack tip exceeded the 
material parameter, Kc. This criterion has subse- 
quently been empirically modified so that, for 
most materials, the crack velocity is a function 
V(K), and that usually the crack will not grow 
at a detectable rate if K does not exceed a 
threshold value. The analysis presented so far in 
this paper has not included the kinetics of craze 
growth, but it would seem reasonable that the 
craze growth velocity was a function of some 
controlling parameter and, hence, the suggestion 
of Equation 8. It is also probable that a craze will 
not grow at all if the value of -- dV/dR does not 
exceed a threshold value that is a material para- 
meter. Further experimental work is needed in 
order to establish the validity of Equation 8, and if 
it is, to establish the nature of the function f. 
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Next, the predictions of  the energetics analysis 
in this paper are compared with observations of  
craze growth. In modelling the craze it is possible 
to use a one-level craze stress model, a two-level 
craze stress model, or some more complex vari- 
ation. It is clear that the single-level craze stress 
model leads to unrealistic predictions of the 
equilibrium length of crazes; if the craze stress 
% is less than the applied stress o~. then the craze 
lengths should grow to an infinite size, in spite of 
any craze-craze interactions; if o e > oo0 then the 
craze stress can only be very slightly larger than o| 
otherwise the craze equilibrium lengths will be 
impossibly small, even allowing for large surface 
grooves; however, it is observed that crazes grow 
for a significant range of o~ values. The two-level 
craze stress model surmounts these difficulties 
provided that the stress at the end of the craze, 
~r e, is greater than the applied stress, ooo, and 
provided that the stress in the body of the craze 
is slightly less than o=. 

To proceed further with the discussion of craze 
growth, the two dimensions, of  surface length and 
of penetration from the free surface, will be 
treated separately so that comparison with two- 
dimensional models can be more easily made. 

Firstly, it is clear from the discussion of the 
results shown in Table I that the close proximity 
of  the innermost craze tips of a pair of crazes. 
leads to a reduction in - d V / d a  at these craze 
tips once they overlap. However, it does not 
decrease the corresponding quantity at the outer 
craze tips. Hence, it is possible to understand 
why pairs of partially overlapped crazes are often 
observed, but it does not immediately explain why 
the total length of the craze pair does not continue 
to increase. However, when the penetration from 
the surface of a number of equally spaced crazes is 
analysed (Fig. 8) it is clear that, once the craze 
length/craze separation ratio, a/s becomes greater 
than 0.3, the potential energy release rate 
-- dV[da reaches a plateau level; the consequence 
of this is that the tensile stress near the free sur- 
face is reduced to o e, the tensile stress across the 
craze body. If the craze surface length, L, is now 
reconsidered in the light of  this "stress relieved" 
surface layer it is clear that there is no longer any 
driving force for growth of the craze surface 
length. Therefore, the curves delineating the 
craze tip are effectively pinned at the free surface 
at this stage, and further growth can only occur 
by increased penetration. 



Secondly, although the analysis made of the 
energetics of  the increase in craze penetration 
from the free surface is incomplete, it demon- 
strates several interesting features. It predicts that 
craze initiation is only possible if there are surface 
grooves; otherwise - dV/da is zero when the craze 
length is zero. For the two-dimensional model, 
shown in Fig. 9, - -dV/da  reaches a steady value 
per craze once each craze in the array has grown 
longer than about 30% of the craze separation. 
This conclusion would not be modified if a more 
realistic three-dimensional model were analysed 
with flat finger-like crazes all advancing at the 
same rate, (like Fig. 1 but with a greater craze 
penetration), since each craze would liberate 
potential energy from the prism of material 
surrounding it rather than from a plate of 
material. However as the craze-tip curve-length 
increases as the craze grows there would be an 
additional expenditure of energy compared with 
the two-dimensional model. 

These ideas are supported by the analysis of 
the experimental observations of craze growth in 
polycarbonate: each mature craze would appear to 
occupy a surface area of roughly 4L 2. 

If  the postulate is made that craze growth will 
not occur unless 

-- dV/da > C, (12) 

where C is a material constant, then it is possible 
to explain why craze growth could stop even when 
the applied stress or162 exceeds the craze body stress 
ec: if a number of crazes of equal length and 
separation develop, then the value o f - -  dV/da will 
depend on s, and not on the craze length, if 
a > 0 . 3 s ;  consequently, it is possible that Con- 
dition 12 is not met, and so craze growth stops. 
This stable situation could break down if one of 
the crazes becomes larger than the rest. 

It is evident that further research must be done 
on the micromechanics of crazing. Kramer [3] has 
discussed whether it is the micromechanics of the 
craze tip or of the processes occurring at the sides 
of the crazes that control craze growth kinetics. 
Whichever it is, it seems possible that it is the 
potential energy release rate of  the elastic material 
that is the driving force. There seems little point in 
refining any models of craze growth kinetics [12, 
13] until it becomes apparent what are the craze 
micromechanisms, and what are the geometric 
factors in each experiment (size of surface grooves, 
relative positions of crazes etc.): 

6. Conclusions 
The following conclusions can be drawn from this 
investigation: 

(a) On the basis of observations that crazes 
rarely deviate in direction when they grow past 
each other, the tensile stress across the body of an 
air craze must b e  at least 90% of  the applied ten- 
sile stress on the specimen. 

(b) Craze interactions are very important in 
limiting the surface growth of crazes. They also 
alter the energetics of  craze penetration from the 
free surface, largely as a result of the presence of 
neighbouring crazes in the line of the applied ten- 
sile stress. 

(c) The principle of minimizing the potential 
energy of the elastic material surrounding the 
craze seems to be a useful one for predicting the 
equilibrium length of crazes. It is possible that the 
differential -- dV/da controls the craze velocity. 
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